Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 26, 2026
- 
            Free, publicly-accessible full text available June 26, 2026
- 
            Free, publicly-accessible full text available May 23, 2026
- 
            Free, publicly-accessible full text available May 5, 2026
- 
            Free, publicly-accessible full text available April 24, 2026
- 
            Certain microalgal species, such as Scenedesmus obliquus strain HTB1, thrive under high CO2 concentrations, making them promising for carbon sequestration to mitigate climate change. Isolated from the Baltimore Inner Harbor, HTB1 grows faster with 10 % CO2 than with ambient air. To investigate its responses to salinity and elevated CO2, two experiments were conducted. In the first, HTB1 was cultured at seven different salinities (0, 17.5, 20, 22.5, 25, 27.5, and 30 ppt) (parts per thousand) under ambient air. Higher salinity caused cell shrinkage, color changes from green to pale white, reduced pigments like zeaxanthin, lutein, and chlorophyll b, but increased canthaxanthin. Growth declined significantly above 22.5 ppt. The second experiment compared HTB1's response to salinity (0, 10, 20 ppt) under air and 10 % CO2. Cultures under 10 % CO2 showed minimal color changes, while those under air shifted from green to brown, with salinity having less inhibitory effects on growth under elevated CO2. Interestingly, lutein and canthaxanthin levels rose with salinity in 10 % CO2. These findings indicate that elevated CO2 mitigates salt stress in HTB1, reducing its impact on growth and promoting adaptive pigment changes. This study sheds light on how salinity and CO2 interact to influence HTB1's morphology, growth, and pigment composition, enhancing our understanding of its resilience and potential applications.more » « lessFree, publicly-accessible full text available April 8, 2026
- 
            Free, publicly-accessible full text available February 25, 2026
- 
            Free, publicly-accessible full text available February 25, 2026
- 
            Free, publicly-accessible full text available December 18, 2025
- 
            Bird's-eye-view Semantic Segmentation (BEVSS) is a powerful and crucial component of planning and control systems in many autonomous vehicles. Current methods rely on end-to-end learning to train models, leading to indirectly supervised and inaccurate camera-to-BEV projections. We propose a novel method of supervising feature extraction with camera-view depth and segmentation information, which improves the quality of feature extraction and projection in the BEVSS pipeline. Our model, evaluated on the nuScenes dataset, shows a 3.8% improvement in Intersection-over-Union (IoU) for vehicle segmentation and a 30-fold reduction in depth error compared to baselines, while maintaining competitive inference times of 32 FPS. This method offers more accurate and reliable BEVSS for real-time autonomous driving systems. The codes and implementation details and code can be found athttps://github.com/bluffish/sucam.more » « lessFree, publicly-accessible full text available November 15, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
